2,230 research outputs found

    Hamiltonian Formulation of Quantum Hall Skyrmions with Hopf Term

    Full text link
    We study the nonrelativistic nonlinear sigma model with Hopf term in this paper. This is an important issue beacuse of its relation to the currently interesting studies in skyrmions in quantum Hall systems. We perform the Hamiltonian analysis of this system in CP1CP^1 variables. When the coefficient of the Hopf term becomes zero we get the Landau-Lifshitz description of the ferromagnets. The addition of Hopf term dramatically alters the Hamiltonian analysis. The spin algebra is modified giving a new structure and interpretation to the system. We point out momentum and angular momentum generators and new features they bring in to the system.Comment: 16pages, Latex file, typos correcte

    Fermionic edge states and new physics

    Full text link
    We investigate the properties of the Dirac operator on manifolds with boundaries in presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.Comment: 24 pages, 3 figures. Title changed, additional material in the Introduction section, the Application section and in the Discussion section highlighting some recent work on singular potentials, several references added. Conclusions remain unchanged. Version matches the version to appear in PR

    Representations of Composite Braids and Invariants for Mutant Knots and Links in Chern-Simons Field Theories

    Get PDF
    We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) rr-strand composite braids. Salient features of the theory of such composite braids are presented. Representations of generators for these braids are obtained by exploiting properties of Hilbert spaces associated with the correlators of Wess-Zumino conformal field theories. The rr-composite invariants for the knots are given by the sum of elementary Chern-Simons invariants associated with the irreducible representations in the product of rr representations (allowed by the fusion rules of the corresponding Wess-Zumino conformal field theory) placed on the rr individual strands of the composite braid. On the other hand, composite invariants for links are given by a weighted sum of elementary multicoloured Chern-Simons invariants. Some mutant links can be distinguished through the composite invariants, but mutant knots do not share this property. The results, though developed in detail within the framework of SU(2)SU(2) Chern-Simons theory are valid for any other non-abelian gauge group.Comment: Latex, 25pages + 16 diagrams available on reques

    Chirality of Knots 9429_{42} and 107110_{71} and Chern-Simons Theory

    Get PDF
    Upto ten crossing number, there are two knots, 9429_{42} and 107110_{71} whose chirality is not detected by any of the known polynomials, namely, Jones invariants and their two variable generalisations, HOMFLY and Kauffman invariants. We show that the generalised knot invariants, obtained through SU(2)SU(2) Chern-Simons topological field theory, which give the known polynomials as special cases, are indeed sensitive to the chirality of these knots.Comment: 15 pages + 7 diagrams (available on request

    Preemptive Thread Block Scheduling with Online Structural Runtime Prediction for Concurrent GPGPU Kernels

    Full text link
    Recent NVIDIA Graphics Processing Units (GPUs) can execute multiple kernels concurrently. On these GPUs, the thread block scheduler (TBS) uses the FIFO policy to schedule their thread blocks. We show that FIFO leaves performance to chance, resulting in significant loss of performance and fairness. To improve performance and fairness, we propose use of the preemptive Shortest Remaining Time First (SRTF) policy instead. Although SRTF requires an estimate of runtime of GPU kernels, we show that such an estimate of the runtime can be easily obtained using online profiling and exploiting a simple observation on GPU kernels' grid structure. Specifically, we propose a novel Structural Runtime Predictor. Using a simple Staircase model of GPU kernel execution, we show that the runtime of a kernel can be predicted by profiling only the first few thread blocks. We evaluate an online predictor based on this model on benchmarks from ERCBench, and find that it can estimate the actual runtime reasonably well after the execution of only a single thread block. Next, we design a thread block scheduler that is both concurrent kernel-aware and uses this predictor. We implement the SRTF policy and evaluate it on two-program workloads from ERCBench. SRTF improves STP by 1.18x and ANTT by 2.25x over FIFO. When compared to MPMax, a state-of-the-art resource allocation policy for concurrent kernels, SRTF improves STP by 1.16x and ANTT by 1.3x. To improve fairness, we also propose SRTF/Adaptive which controls resource usage of concurrently executing kernels to maximize fairness. SRTF/Adaptive improves STP by 1.12x, ANTT by 2.23x and Fairness by 2.95x compared to FIFO. Overall, our implementation of SRTF achieves system throughput to within 12.64% of Shortest Job First (SJF, an oracle optimal scheduling policy), bridging 49% of the gap between FIFO and SJF.Comment: 14 pages, full pre-review version of PACT 2014 poste

    Beyond fuzzy spheres

    Full text link
    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R3\mathbb{R}^3. We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.Comment: 9 pages, 3 Figures, Minor changes in the abstract have been made. The manuscript has been modified for better clarity. A reference has also been adde
    corecore